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Abstract

In this paper we derive and test an extended mass-flow type stochastic particle algorithm for simulating the growth
of nanoparticles that are formed in flames and reactors. The algorithm incorporates the effects of coagulation that dom-
inates such systems, along with a particle source and surface growth. We simulate three different configurations for the
creation of nanoparticles. The oxidation of SiH4 to SiO2 and Fe(CO)5 to Fe2O3 in premixed H2/O2/Ar flames were
investigated under different initial concentrations of SiH4 and Fe(CO)5, respectively. In addition, the oxidation of TiCl4
to TiO2 in a plug-flow reactor was investigated. A simple reaction mechanism for the conversion of Fe(CO)5 to Fe2O3

was suggested, based on prior experimental data along with estimated transport properties for the species considered in
this system. The simulation results were compared to experimental data available in the literature.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we present a solution method for population balance models which describe the synthesis
and the dynamics of inorganic nanoparticles. One important method of their production is the synthesis in
flames and plug flow reactors. The models which describe this process can be divided into three parts: a
particle source linked to the gas-phase rate of production, a surface growth term linked to the gas-phase
concentration of a precursor species and the surface area of the particles, and a coagulation term with a
rate determined by a coagulation kernel.
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Nomenclature

A pre-exponential factor in Arrhenius expression (various)
AD area density (m�1)
ax surface area of a particle of size x (m2)
C concentration of precursor chemical (mol m�3)
c(0,x), c0(x) initial concentration of particles (m�3)
c(t,x) concentration of particles of size x at time t (m�3)
ctot total error in solution (various)
Df fractal dimension (–)
EA activation energy (J/mol)
Iinf rate of particle inception (m�3 s�1)
Isurf rate of surface growth (m�2 s�1)
K(x,x 0), K̂ðx; x0Þ Coagulation kernel (m3 s�1)
kB Boltzmann�s constant (J K�1)
kg gas oxidation rate constant (s�1)
ks surface oxidation rate constant (m s�1)
ktotal total rate constant of precursor oxidation (s�1)
L number of independent runs of the simulation (–)
m mass of particle (kg)
Mn the nth moment of the distribution (various)
N number of stochastic particles (–)
Q mass flow rate per unit area (kg m�2 s�1)
t time (s)
tstop time at end of simulation (s)
V velocity (m s�1)
x,y dimensionless volume (v/v0) (–)
qn density of reactor gas (kg m�3)
qs particle density (kg m�3)
0 at initial conditions (–)
n denotes at point n (–)
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There exist three main ways to simulate such systems: the method of moments [1], the sectional method
[2] and stochastic particle methods [3–6]. The method of moments uses moment evolution equations for the
system, which are then solved so giving the time evolution of various moments of the particle system. This
method is fast and relatively simple to implement; however it cannot fully generate the particle size distri-
bution (PSD) and introduces closure problems. For the resolution of the PSD we may use a sectional
method. This is a finite element method which replaces the partial differential equations with a series of or-
dinary differential equations. It can be incorporated very efficiently into standard flame simulations, hence
its rather wide-spread use.

Stochastic particle methods have been developed for some years. In 1972, Gillespie [7] used a stochastic
model to simulate cloud droplet growth. More recently, Eibeck and Wagner [8–10] and Kolodko and Sabel-
feld [11] applied such ideas to coagulation and fragmentation problems, deriving both the direct simulation
algorithm (DSA) [12,13] and mass-flow algorithm (MFA) with their accompanying convergence proofs and
exploiting majorant kernels for the reduction of the complexity of the algorithm. These methods have been
applied to chemical engineering by Goodson and Kraft [14] who studied the convergence properties of their



640 N.M. Morgan et al. / Journal of Computational Physics 211 (2006) 638–658
algorithm and by Grosschmidt et al. [5] who applied such an algorithm to simulate the production of silica.
A similar extension to the model, subsequently solved by a stochastic MFA has been performed by Debry
et al. [15]. However, there are a number of differences between their algorithm and the one used in [5]. In
[15] they make use of a deterministic time step equal to the maximum value of a majorized coagulation ker-
nel, but do not discuss the introduction of fictitious jumps. They also use operator splitting methods to sim-
ulate processes other than coagulation and make use of a bin method for particle storage and selection.
Their algorithm scales with time as N3/2 rather than linearly with N as demonstrated in [14] where N is
a measure of the number of stochastic particles.

In this paper, we present an extension of the MFA [10,16] that generates a solution to Smoluchowski
coagulation equation with surface growth and a particle source. The algorithm presented in this paper is
used to calculate an exponentially distributed time step based on a majorant kernel and introduces fictitious
jumps to compensate for the use of the majorant, uses stochastic jumps for all processes and makes use of a
binary tree method for the determination of the coagulation partners. The algorithm presented in this paper
is derived from first principles from the original equation stated.

The results of a computational implementation of this algorithm are then compared to similar results
from the DSA to study its convergence properties and physical systems for which experimental measure-
ments have been obtained. We apply this algorithm to the production of titania. In this system, the surface
reaction rate and the gas phase oxidation rate are not independent; however the algorithm can be altered to
allow for systems where there is no interdependance.
2. Coupling the flame simulations to the population balance model

In order to simulate a 1D inhomogeneous flame-particle system, first the associated flame equations for
the gas-phase must be solved. The flame equations [17] describe the evolution of the various species created
and destroyed in the flame and include convection and diffusion along with other mechanisms. We solve the
flame equations using the 1D flame code, PREMIX [18]. PREMIX solves the equations using a damped
form of Newton�s method. For the stochastic simulation, we require three pieces of information from
the solution to the flame model: the velocity field, the temperature profile and the rate of production of
the particulate species along the length of the axis.

It is important to mention at this point that our population balance model is spatially homogeneous in
nature. As such, what is simulated is a Lagrangian view of particles in a control volume that moves with the
velocity field. We assume that no particles leave the control volume up or down stream and that mass can
only enter the volume from the gas phase production of the desired species from the particle source or sur-
face growth.

In order to use the results from the PREMIX code in the stochastic coagulation code, it is necessary to
convert the independent variable from a spatial coordinate to a time coordinate which will be used as the
residence time of the particles. It is straightforward to calculate the velocity, V, of the flow field at any of the
PREMIX calculated points, n, using the flow rate that PREMIX outputs, Q and density, q. Note that as
PREMIX is a 1D simulation package, Q has units of kg m�2 s�1.
V n ¼
Qn

qn
. ð1Þ
The time, tn, is then calculated from the average speed between points i and i � 1 and the distance
between these points
tn ¼ 2
Xn
i¼1

xi � xi�1

V i þ V i�1

; t0 ¼ 0. ð2Þ
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This is the same as numerically integrating 1/velocity with respect to distance using a simple trapezium
rule.

The temperature and rate of production of the particle species can now be written in terms of time and
used for the population balance model.
3. Population balance model

The model we construct for the growth of nanoparticles in flames contains three different processes: a
particle source, surface growth and coagulation. The governing equation, extending the Smoluchowski
coagulation equation [19], is given below
o

ot
cðt; xÞ ¼ 1

2

Xx�1

y¼1

Kðx� y; yÞcðt; x� yÞcðt; yÞ �
X1
y¼1

Kðx; yÞcðt; xÞcðt; yÞ þ I infcinðxÞ

þ I surf ax�1cðt; x� 1Þ � axcðt; xÞ½ �; ð3Þ
where c(t,x) is the concentration of particles of size x (where x is a dimensionless volume = v/v0), at time t,
subject to the initial condition
cð0; xÞ ¼ c0ðxÞ P 0. ð4Þ

The sections which follow describe the terms in Eq. (3).

3.1. Particle source

New mass is allowed to enter the particle system as monomeric particles produced from the gas phase.
The equation that describes the time evolution of this process is shown below
o

ot
cðt; xÞ ¼ I infcinðxÞ; ð5Þ
where cin describes a source of particles of unit size (with mass m0, volume v0, surface area a0 and radius r0)
cinðxÞ ¼ dð1; xÞ; ð6Þ

where d is the Kronecker delta and the rate of production, Iinf, is the gas phase rate of production of these
monomers.

3.2. Surface growth

Some particle systems, for example TiCl4 + O2 ! TiO2 + 2Cl2, allow growth through the deposition of
new mass directly onto the surface of an existing particle. In certain circumstances, it makes a significant
contribution to the growth of particles and thus should be included in a simulation [20]. The size evolution
of particles due to surface growth can be described by
o

ot
cðt; xÞ ¼ I surf ax�1cðt; x� 1Þ � axcðt; xÞ½ �; ð7Þ
where Isurf is the overall rate of deposition of mass onto the surface of all particles in the system and ax is the
surface area of a particle of size x. In this model, we consider the deposition of monomeric particles onto
the surface of existing particles, thus taking them from a volume of v � v0 to v and area a � a0 to a. Eq. (7)
therefore describes the rate of change of particles from size x � 1 up to size x and is proportional to the
surface area and concentration of the particles.
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In the case of TiO2 it is possible to approximate the system by one reaction as opposed to a set of cou-
pled reactions. The reaction of TiCl4 + O2 ! TiO2 + 2Cl2 has an overall observed rate such that the rate of
change of TiCl4 concentration is [21]
dC
dt

¼ �ktotalC; ð8Þ
where C is the concentration of TiCl4 remaining in the system and ktotal is the rate constant. The parameter
k total is made up of two competing mechanisms; one which reacts TiCl4 with O2 to form monomers of TiO2

and has an associated rate constant of kg and another process which tries to react TiCl4 on the surface of an
oxide particle (and hence is termed surface growth), with an associated rate of ksAD. Here AD is the area
density of the system (i.e., the total surface area of the particles divided by the control volume they are con-
tained in). The two rates are related through the overall rate constant thus
ktotal ¼ kg þ ksAD. ð9Þ

The total amount of TiCl4 removed from the system remains the same whether surface growth is included
or not. The reacted TiCl4 is then split between surface growth and particle inception with the rates being
I inf ¼ kgCNA ½m�3 s�1�; and I surf ¼ ksCNA ½m�2 s�1�; ð10Þ

where NA is Avogadro�s constant. Note that kg is calculated from prior knowledge of ktotal and ks by rear-
ranging Eq. (9).

In order to implement this algorithm we must calculate the surface area, a, from the volume. At this
point in the paper, it is prudent to have a small discussion about the nature of the particles that we are sim-
ulating. Sintering (that is to say the coalescence of particles into spherical �primary� particles) is a very
important mechanism, however in this simple model with only one internal coordinate, we do not consider
it as a separate mechanism. As such, and in order to take account of this process, we will assume that the
particles in the system instantaneously partially-sinter such that their surface area is reduced by some small
amount. This amount is determined by the constant fractal dimension chosen for the simulation. We
assume that the particles have a constant fractal dimension, Df, defined by [22]
v
v0

¼ r
r0

� �Df

¼ a
a0

� �Df=2

. ð11Þ
If we assume that the smallest particle is spherical, then a0 is calculated by
a0 ¼ 4p
3m0

4pqs

� �2=3

ð12Þ
and hence we can calculate the surface area from
a ¼ a0
v
v0

� �2=Df

¼ a0x2=Df . ð13Þ
Values can range from 2.0 to 3.0, where Df = 2.0 would denote unsintered aggregates and Df = 3.0 fully
coalesced spheres.

3.3. Coagulation model

Coagulation of particles is modelled using Smoluchowski�s coagulation equation [19] with a kernel suit-
able for the flames simulated
o

ot
cðt; xÞ ¼ 1

2

Xx�1

y¼1

Kðx� y; yÞcðt; x� yÞcðt; yÞ �
X1
y¼1

Kðx; yÞcðt; xÞcðt; yÞ. ð14Þ
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The first term in Eq. (14) describes the increase in concentration of particles of size x due to the coagulation
of two smaller particles whose size sum to x. The second term describes the decrease in the concentration of
particles of size x that occurs whenever a particle of size x coagulates with any other particle. These two
operators describe the coagulation behaviour of the system.

The kernel used in this investigation is for coagulation occurring in the free-molecular regime. This is
applicable when the mean free path of a particle is considerably greater than its effective diameter. The rate
of coagulation of any two particles in the free-molecular regime is [14]
Kðx; yÞ ¼ 3

4p

� �2
3 8pkBT

qs

� �1
2 m0

qs

� �1
6

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

1

x
þ 1

y

� �1
2

x
1
Df þ y

1
Df

� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bðx;yÞ

; ð15Þ
where a can be thought of as the scaling factor of the kernel and b(x,y) is a dimensionless kernel. In the
scaling factor, kB is Boltzmann�s constant, T is the temperature and qs is the particle density. The first factor
on the right-hand side of Eq. (15) denotes terms for calculating the cross sectional area of the particles, the
second factor comes from kinetic theory of gases and is related to the relative speeds of any two particles
and the third factor comes from the calculation of both the mass and areas of the particles.
4. Solving the population balance model

4.1. Deriving the mass-flow vague form

In this section, we introduce the mass-flow vague form of the extended Smoluchowski equation. From
this we are able to choose the generators of the stochastic process.

Starting with the integral form of Eq. (3)
o

ot
cðt; xÞ ¼ 1

2

Z x

0

Kðx� y; yÞcðt; x� yÞcðt; yÞ dy �
Z 1

0

Kðx; yÞcðt; xÞcðt; yÞ dy þ I infcinðxÞ

þ I surf ax�1cðt; x� 1Þ � axcðt; xÞ½ �; ð16Þ
we will be able to derive and deduce a set of stochastic generators for the processes in the population bal-
ance model. The equation is now multiplied by a continuous, compactly-supported test function, /(x) and
integrated over all x
o

ot

Z 1

0

/ðxÞcðt; xÞ dx ¼
Z 1

0

/ðxÞI infcinðxÞ dxþ
Z 1

0

/ðxÞI surfa0ðx� 1Þ2=Df cðt; x� 1Þ dx

�
Z 1

0

/ðxÞI surfa0x2=Df cðt; xÞ dxþ 1

2

Z 1

0

/ðxÞ

�
Z x

0

Kðx� y; yÞcðt; x� yÞcðt; yÞ dy dx

�
Z 1

0

/ðxÞ
Z 1

0

Kðx; yÞcðt; xÞcðt; yÞ dy dx. ð17Þ
In order to get the equation into a form that allows generators to be easily extracted, certain substitutions
can be made. The variable x in the first surface growth term is substituted for another variable, y = x � 1,
yielding,
Z 1

0

/ðy þ 1ÞI surfa0y2=Df cðt; yÞ dy �
Z 1

0

/ðxÞI surfa0x2=Df cðt; xÞ dx. ð18Þ
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In consequence the above equation may be written as
Z 1

0

/ðxþ 1Þ � /ðxÞ½ �I surfa0x2=Df cðt; xÞ dx. ð19Þ
Now, using the identity
Z 1

0

Z 1

0

Wðx; yÞ dy dx ¼
Z 1

0

Z x

0

Wðx� y; yÞ dy dx; ð20Þ
we can rewrite the last two terms of Eq. (17) as
Z 1

0

Z 1

0

1

2
/ðxþ yÞ � /ðxÞ

� �
Kðx; yÞcðt; xÞcðt; yÞ dy dx. ð21Þ
Combining Eqs. (19) and (21) with Eq. (17) and allowing P to be a measure-valued solution of the equation
such that
P ðt; dxÞ ¼ cðt; xÞ dx ð22Þ
and using the inner product defined by
h/; PðtÞi ¼
Z
N

/ðxÞP ðt; dxÞ; ð23Þ
we obtain
o

ot
h/; P ðtÞi ¼

Z
N

/ðxÞI infP inðt; dxÞ þ
Z
N

/ðxþ 1Þ � /ðxÞ½ �I surfa0x2=DfPðt; dxÞ

þ
Z
N2

1

2
/ðxþ yÞ � /ðxÞ

� �
Kðx; yÞP ðt; dxÞP ðt; dyÞ; ð24Þ
with P0(dx) = P(0,dx) = c(0,x) dx. The total mass of the system is calculated by
Z
N

xP ðt;dxÞ. ð25Þ
We now call the measure,
Qðt; dxÞ ¼ xP ðt; dxÞ; t P 0; ð26Þ

the mass density and introduce a new continuous compactly-supported test function, w(x), such that
xw(x) = /(x). Substituting into Eq. (24) we derive the mass flow equation
o

ot
hw;QðtÞi ¼

Z
N

wðxÞI infQinðt; dxÞ þ
Z
N

ðxþ 1Þwðxþ 1Þ � xwðxÞ½ �I surfa0x2=Df
Qðt; dxÞ

x

þ
Z
N2

wðxþ yÞ � wðxÞ½ �Kðx; yÞ
y

Qðt; dxÞQðt; dyÞ; ð27Þ
where Q0(dx) = Q(0,dx) = xP(0,dx).

4.2. Deriving the stochastic generators

In order to solve Eq. (27) we introduce a sequence of random variables that are measure-valued jump

processes QðNÞ
t 2 fk

PN
i¼1dxi jk 2 R; xi 2 Ng, such that there is weak convergence in distribution to Q as

N! 1. We now let
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QðNÞ
t ¼ kðNÞ

t RðNÞ
t . ð28Þ
Accordingly set
RðNÞ
t ¼

XN
i¼1

dðxiÞ and kðNÞ
t ¼ kðNÞ

0

N
N � 1

� �aðNÞ
t

. ð29Þ
For notational convenience in what follows we will drop the superscript (N).
The measure R represents a set of stochastic particles and kt an overall scaling factor. The parameter k0 is

calculated from the initial concentration of particles in the system c0(x) by
k0 ¼
c0ðxÞ
N

. ð30Þ
Let W(a,R) be a bounded measurable function. We will now consider
o

ot
Wða;RÞ ¼ GN

i Wða;RÞ þ GN
s Wða;RÞ þ GN

c Wða;RÞ; ð31Þ
where GN
i ;G

N
s and GN

c are stochastic generators for particle inception, surface growth and coagulation,
respectively. Matching terms from Eq. (31) with terms in Eq. (27) allows us to write down forms for the
generators.

First we define the jump processes:

For coagulation
J cða;R; x; yÞ ¼ ða;Rþ dxþy � dxÞ; ð32Þ

for particle inception
J iða;R; yÞ ¼ ðaþ 1;Rþ d1 � dyÞ ð33Þ

and for surface growth
J s1ða;R; xÞ ¼ ða;Rþ dxþ1 � dxÞ ð34Þ

and
J s2ða;R; x; yÞ ¼ ðaþ 1;Rþ dxþ1 � dyÞ. ð35Þ

We then use these jumps to define a set of generators:

For coagulation
GN
c Wða;RÞ ¼ k0

N
N � 1

� �a Z
N2

½WðJ cða;R; x; yÞ �Wða;RÞ�Kðx; yÞ
y

RðdxÞRðdyÞ; ð36Þ
for particle inception
GN
i Wða;RÞ ¼ I inf

k0

N � 1

N

� �aþ1 Z
N

½WðJ iða;R; yÞÞ �Wða;RÞ�RðdyÞ
N

; ð37Þ
and for surface growth
GN
s Wða;RÞ ¼ I surfa0

Z
N

x2=Df ½WðJ s1ða;R; xÞÞ �Wða;RÞ�RðdxÞ þ N � 1

N
I surfa0

Z
N2

x2=Df�1½WðJ s2ða;R; x; yÞÞ

�Wða;RÞ�RðdxÞRðdyÞ
N

. ð38Þ
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If we take W(a,R) to be
Wða;RÞ ¼ k0

Z
N

N
N � 1

� �a

RðdxÞwðxÞ ¼
Z
N

QðdxÞwðxÞ; ð39Þ
we find that:

For coagulation
GN
c Wða;RÞ ¼ k20

N
N � 1

� �2a Z
N2

½wðxþ yÞ � wðxÞ�Kðx; yÞ
y

RðdxÞRðdyÞ; ð40Þ
for particle inception
GN
i Wða;RÞ ¼ kI inf

Z
N

wðxÞRinðt; dxÞ ¼ I infwð1Þ; ð41Þ
and for surface growth
GN
s Wða;RÞ ¼ I surfa0k0

N
N � 1

� �a Z
N

x2=Df 1þ 1

x

� �
wðxþ 1Þ � xwðxÞ

� �
RðdxÞ. ð42Þ
If we combine Eqs. (40)–(42) we obtain Eq. (27), showing that the choice of generators and jumps is
consistent.

4.3. An algorithm for the simulation of nanoparticles with surface growth and source term

In this section, we describe a stochastic mass-flow algorithm. For a particle system x1,. . .,xN, Eqs. (32)–
(42) describe how and when these particles interact either with each other or the surrounding gas phase. The
principle works as follows. We generate an exponentially distributed time with parameter equal to the sum
of all rates. After this time we let the particles interact. This interaction will be called a jump, motivated by
the underlying jump-process. The nature of the interaction is determined by the probability of each possible
physical process, which is a function of the current state of the system. The corresponding event is chosen
probabilistically according to the rates of each process.

A majorant form of the coagulation kernel, K̂ðxi; xjÞ, will be introduced into the algorithm. This is done
to change the way the double sum over all particle pairs in the coagulation generator is calculated. Instead
of one double sum with complexity OðN 2Þ we calculate two independent sums and multiply them, reducing
the complexity towards OðNÞ. This introduces the concept of fictitious jumps where no jump is performed.
Fictitious jumps occur with probability
1� Kðxi; xjÞ
K̂ðxi; xjÞ

ð43Þ
and so we take care to choose the majorant such that we reduce the number that occur.
The algorithm is as follows:

(1) Generate initial state (x1,. . .,xN, k = k0, a = 0) and choose tstop
(2) Calculate the total area density, AD from
AD ¼ k
XN
i¼1

ai
xi
¼ ka0

XN
i¼1

x2=Df
i

xi
ð44Þ
and hence calculate kg from Eq. (9).
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(3) Generate an exponentially distributed time step s, with parameter
.̂ðpÞ ¼ .̂cðpÞ þ .iðpÞ þ .S1ðpÞ þ .S2ðpÞ; ð45Þ

.̂ðpÞ ¼ k
XN
i¼1

XN
j¼1

K̂ðxi; xjÞ
xj

þ I inf

k
þ I surf

XN
i¼1

a0x
2=Df
i þ I surf

N � 1

N

� �XN
i¼1

a0x
2=Df�1
i ð46Þ
and increase time according to
t 7! t þ s ð47Þ
if tP tstop then stop the simulation, otherwise go to step 4.
(4) With probabilities
.iðpÞ
.̂ðpÞ ;

.S1ðpÞ
.̂ðpÞ ;

.S2ðpÞ
.̂ðpÞ ;

.̂cðpÞ
.̂ðpÞ ð48Þ
go to step 5, 6, 7 or 8, respectively.
(5) Perform a particle inception step:
(a) Replace a uniformly chosen particle from the ensemble by a particle of size 1.
(b) a´ a + 1.
(c) Return to step 2.
(6) Perform a surface growth step (type 1):

(a) Choose a particle, i, according to the distribution:

x2=Df
iPN

k¼1x
2=Df
k

. ð49Þ

(b) Replace particle i and with a particle of size xi + 1.
(c) Return to step 2.
(7) Perform a surface growth step (type 2):

(a) Choose a particle, i, according to the distribution

x2=Df�1
iPN

k¼1x
2=Df�1
k

ð50Þ
and a particle j uniformly.

(b) Replace particle j with a particle of size xi + 1.
(c) a´ a + 1.
(d) Return to step 2.
(8) Perform a coagulation step:

(a) Choose particles i and j according to the distribution:

K̂ðxi ;xjÞ
xjP

i;j
K̂ðxj;xjÞ

xj

; i 6¼ j. ð51Þ

(b) With probability

Kðxi; xjÞ
K̂ðxi; xjÞ

ð52Þ
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add a particle of size (xi + xj) to the particle ensemble and remove one of size xi. Otherwise the jump
is fictional and the particles do not interact.
(c) Return to step 2.
5. Numerical investigation of the mass-flow algorithm

5.1. The test simulation

A test case was used in order to study the convergence properties of the MFA compared to the DSA for
speed and accuracy. The main macroscopic quantities we look at in this paper are the average mass and the
first, second and third moments of the distribution. These functionals were chosen as in this rather limited
analysis, quantities that would be of use in industrial applications (mean, standard deviation and skewness)
were thought to be the most useful. As such this analysis is not to be taken as a complete convergence study,
but an initial investigation into the algorithm�s properties.

The parameters for the DSA test case were as follows:1

To study the systematic error of the algorithm, we use a reference solution which corresponds to the
numerical solution obtained using one run at the largest feasible N.

In the mass-flow formulation, the average mass is proportional to the harmonic mean of the sizes {xi}
m0
1

N

XN
i¼1

x�1
i

 !�1

ð53Þ
and in all following simulations, the average mass is calculated using this formula. Average diameters are
calculated by converting the average mass to an equivalent diameter. The nth mass moment density is cal-
culated by
Mn ¼ c0mn
0

N
N

N � 1

� �aXN
i¼1

xn�1
i . ð54Þ
The moments of the distribution were determined and errors in the solutions at various different values
of N were calculated in accordance with the methods used in [23].

In this investigation, the simulations were run for 8 h on a 1.2 GHz Athlon PC at each value of N, allow-
ing as many runs within that time as could be performed. The input parameters were as in Table 1 with the
exception of N (which varied from 128 to 16384) and L (which varied inversely with N). In this way the
product N · L was kept approximately constant.

5.2. Results of the test simulation

The results for the CPU times and errors in the first three moments were as in Table 1. The parameters tsr
and ctot being the CPU time for a single run and the total error, respectively.

One can see from Table 2 and Fig. 1 that the CPU time for the mass flow algorithm scales linearly with
N. This is in agreement with the improved DSA investigated by Goodson and Kraft [14] and is a conse-
quence of using a linearly majorant kernel for the coagulation calculations.
ese values are not physical for a real nanoparticle system, they have been chosen to represent a test case that can be simulated in
t time.



Table 1
Parameters for the test case

Description Parameter Value Units

Kernel scaling factor a 1.0 m3 s�1

Inflow rate (inception) Iinf 0.5 m�3 s�1

Fractal dimension Df 2.1 �
Number of particles N 2097152 �
Number of runs L 1 �
Initial concentration c0(x) 1.0 m�3

Length of simulation tstop 5.0 s
Mass of monomer m0 1.0 kg
Volume of monomer v0 1.0 m3

Table 2
CPU times and errors for algorithm

N tsr [s] ctot Ave. size %ctot Ave. size %ctot M2 %ctot M3

128 0.39425 0.079237 0.96699 0.81405 2.1103
256 0.76793 0.038381 0.48252 0.43410 1.1106
512 1.5545 0.019825 0.23995 0.22174 0.56378
1024 3.1492 0.011917 0.13249 0.12075 0.29748
2048 6.4304 0.0080560 0.081518 0.085047 0.18720
4096 13.188 0.0056460 0.052420 0.068252 0.14136
8192 29.219 0.0047430 0.043318 0.051557 0.10644
16384 61.637 0.0039410 0.033091 0.046613 0.092308
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The reduction of the total error in average size (Fig. 2) seems to fall as 1=
ffiffiffiffi
N

p
as is expected from a

Monte Carlo simulation. This is in contrast to the convergence properties reported in [14] which seems
to indicate that the algorithm converges as 1/N throughout. The discrepancy here would seem to come from
the way in which the investigation was carried out. In this paper, the investigation was run for 8 h as this
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Fig. 1. CPU time for single runs at various values of N.
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gave statistical errors in the solution of the same order of magnitude of those calculated in [14] (of approx-
imately 0.07). In [14] this was sufficient to ensure that the statistical errors were considerably less than the
systematic errors. Using the mass flow algorithm however, the initial systematic error was two orders of
magnitude less than if the DSA had been used. As such the statistical error was larger than the systematic
error and thus the order of convergence as defined in [23] and stated in [14] could not be calculated.

Fig. 3 shows the relative errors for average size and for the second and third moments of the distribution.
As with the total error in average size, the errors in these quantities also decrease as 1=

ffiffiffiffi
N

p
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6. Simulated systems

Two of the three particle systems are simulated as low pressure H2/O2/Ar flames doped with a precursor
(SiH4 or Fe(CO)5 to generate particles of SiO2 and Fe2O3, respectively). The third reaction scheme describes
the oxidation of TiCl4 to TiO2 at atmospheric pressure in a simple plug-flow reactor.

6.1. Low pressure H2/O2/Ar flame with SiH4 precursor

The SiH4 gas phase kinetics are described by a combined mechanism, which contains 18 H2/O2/Ar reac-
tions plus a further 26 reactions to describe the oxidation of SiH4 to SiO2 [24]. All thermodynamic and
transport properties were found in the CHEMKIN [25] and TRANFIT [26] libraries, respectively. The
flames in this section were simulated at low pressures (30 mbar) and at a velocity of 1.32 ms�1.

The evolution of SiO2 particles under varying input concentrations of SiH4 was investigated. The con-
centration was varied between 131 and 524 ppm with all other input parameters held constant (Table 3).
For the coagulation simulation, the particle number N was set to 1024 and the simulation results averaged
over 50 runs. The fractal dimension of the silica particles, Df, was set to be 2.23.

The CPU time for the 50 runs was 34.18 s.
Fig. 4 shows the result of the coagulation simulation. The simulation results agree well with the exper-

imental measurements of Lindackers et al. [24], predicting the increase in average particle mass (calculated
using Eq. (53)) with the initial concentration of SiH4. This figure also contains results of a sectional method
to solve the population balance equation. We can see that the two methods show reasonable agreement,
however this can only be taken as a first step in fully validating the stochastic particle method as we have
only compared average masses and not the full particle size distributions.

6.2. Low pressure H2/O2/Ar flame with Fe(CO)5 precursor

Previous investigations into simulating the coagulation of Fe2O3 particles have assumed instantaneous
decomposition of the Fe(CO)5 into Fe2O3 [27]. For our paper a simple skeletal mechanism is proposed.
The following Fe(CO)5 kinetics were estimated from the experiments of Giesen et al. [28] andWoiki et al. [29]:
Table
Input

Param

Initial
Pressu
H2:O2

Ar:(H2

SiH4 c
FeðCOÞ5 !
k1
FeCO þ 4CO ð55Þ

FeCO!k2 Feþ CO ð56Þ

4Feþ 3O2 !
k3
2Fe2O3 ð57Þ
The three rate constants were fit to an Arrhenius equation
kf ¼ A exp
�EA

RT

� �
; ð58Þ
with the coefficients for the three chemical equations shown in Table 4.
3
parameters for SiH4 to SiO2 flame

eter Value

flame velocity 1.32 ms�1

re 30 mbar
1.69 mol:mol

+ O2) 1.36 mol:mol
oncentration 131–524 ppm
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Table 4
Rate constants for the proposed Fe(CO)5 to Fe2O3 mechanism

A [cm mol s] EA [J/mol]

k1 4.00 · 109 72341.36
k2 7.00 · 109 72341.36
k�3 7.00 · 1012 0.0
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Note that k3 has been modified to k�3 to allow for the reaction rate to be first order with respect to iron
concentration and zeroth order with respect to oxygen concentration. The third reaction (Eq. (57)) is a
much simplified form of the mechanism to account for the oxidation of Fe to Fe2O3. Its kinetics have been
estimated in order to make that particular reaction faster than the other two reactions. We justify making
this assumption as the paper by Janzen and Roth [27] assumes instant formation of Fe2O3 from Fe(CO)5 at
the start of the flame, whereas the paper by Giesen et al. [28] gives a finite rate for the decomposition of
Fe(CO)5. Since there is no further information about the rates, we chose to allow the oxidation part of
the mechanism not to be the rate limiting step, hence its more rapid rate.

The transport properties of the Fe compounds were also estimated. This was done by comparing the
molecules� size and shape to other species within the TRANFIT database and estimating values as required.
The resulting TRANFIT constants are contained in Table 5.

The equations that use these constants can be found in the TRANFIT manual [26].
The evolution of Fe2O3 particles was investigated for a flame with initial conditions shown in Table 6.

The coagulation simulation parameters were set to N = 1024, L = 50 and Df = 3.0. The simulation took
35.28 s for the 50 runs.

Fig. 5 shows the result of the coagulation simulation. The evolution of the particle diameter (calculated
using Eq. (11)) over time is in good agreement with the experimental data of Janzen et al. [27]. This result



Table 5
Estimated transport properties for Fe compounds

Species C1 C2 C3 C4 C5 C6

Fe 0 2999.0 3.76 0.00 0.00 0.00
Fe(CO)5 2 400.0 5.9 0.00 0.00 1.00
Fe(CO) 1 400.0 3.9 0.00 0.00 1.00
Fe2O3 2 400.0 4.5 0.00 0.00 1.00

The various constants are as follows:
C1 = shape constant where 0 = single atom, 1 = linear molecule, 2 = non-linear molecule.
C2 = the Lennard–Jones potential well depth �/kB [K].
C3 = the Lennard–Jones collision diameter r [Å].
C4 = the dipole moment l in Debye [10�18 cm3/2 erg1/2].
C5 = the polarizability a [Å3].
C6 = the rotational relaxation collision number Zrot at 298 K.

Table 6
Input parameters for Fe(CO)5 to Fe2O3 flame

Parameter Value

Initial flame velocity 1.32 ms�1

Pressure 30 mbar
H2:O2 1.00 mol:mol
Ar:(H2 + O2) 1.04 mol:mol
Fe(CO)5 concentration 524 ppm
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was obtained using a fractal dimension of 3.0, which implies that the particles sinter instantly to spherical
particles.

The next set of simulations involved changing the initial concentration of Fe(CO)5 between 262 and 1572
ppm whilst keeping all other variables constant. The parameters of the flame were as in Table 7. The sim-
ulation parameters for the coagulation were again N = 1024, L = 50 and Df = 3.0. The simulations took
between 30 and 50 s to complete.
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Fig. 5. Comparison of simulated particle size evolution vs experimental data. The lower bound and upper bound lines represent the
limit of a 99.9% confidence interval of the empirical mean of the particle diameter.



Table 7
Input parameters for Fe(CO)5 to Fe2O3 flames with varying initial concentrations of Fe(CO)5

Parameter Value

Initial flame velocity 1.32 ms�1

Pressure 30 mbar
H2:O2 1.00 mol:mol
Ar:(H2 + O2) 1.04 mol:mol
Fe(CO)5 concentration 262–1572 ppm
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Fig. 6 shows the results of the coagulation simulation. The illustrations and measurements show different
trends, which seems odd especially when considering the excellent agreement that was obtained for the sim-
ilar silica system. It is of note that the simulations carried out in [27] also over predict the particle diameters
to a similar order of magnitude. We could attribute some of this discrepancy to a lack of kinetic data being
available for the oxidation of FeCO5 to Fe2O3. However it is more likely that we are simulating agglom-
eration type behaviour which would lead to a rapid growth in particle size, whereas the particle system is
still at the primary particle growth stage. This behaviour illustrates one of the problems with neglecting par-
ticle sintering as a mechanism in the population balance.

6.3. TiCl4 ! TiO2 plug-flow reactor system

The final system simulated was the oxidation of TiCl4 to form titania in a plug-flow reactor. Because this
is a simple system, information about the kinetics of the reactions, the initial concentrations of reactants
and the temperature profile of the reactor are sufficient for a simulation.

The oxidation of TiCl4 to form TiO2 is modelled as a single reaction
Fig. 6.
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where K is the sum of the gas-phase and surface-growth rates as explained in Section 3.2. The kinetic data
for this reaction is taken from the paper by Spicer et al. [20] whilst the thermodynamic data is taken from
the NIST website [30]. No transport data are required.

First the system was simulated at 1400 K, with mole fractions of TiCl4 of 10
�4 and 10�6. At these con-

ditions and with 4096 stochastic particles, the simulations took little over 28 s per run.
Fig. 7 shows how the average particle mass increases over time. The extra mass speeds up the coagula-

tion process and allows a rapid increase in average particle mass at around t = 0.1 s. This effect is due to the
large particles in the system coagulating very rapidly with the new particles from the gas phase in accor-
dance with the coagulation kernel. Once new particles cease to enter the system, the rate of the increase
in particle mass becomes independent of the initial concentration of TiCl4. This is to be expected and it
is of note that this figure shows the same trends as shown in [21] for similar simulations.

The titania system was next simulated at a much higher initial concentration of TiCl4 in order to make
the effect of surface growth more noticeable. The temperature was again 1400 K but the initial mole fraction
of TiCl4 was now 1.0.

Fig. 8 shows various properties of the TiCl4 system, simulated both with and without surface growth. In
Fig. 8(a) we see that the average mass of the particles is larger when surface growth is included in the sim-
ulation compared to when we simulate particle inception and coagulation only. Fig. 8(b) shows that the
same amount of mass is entering the system irrespective of whether there is surface growth or not. This
shows that the addition of mass directly to a particle is more important than the increase in the concentra-
tion of particles for coagulation. Finally Fig. 8(c) shows the PSD at time t = 0.001 s of the systems.2 We see
that when surface growth is included in the simulation, a small additional peak is formed at around mass
equals 8m0. This could correspond to small particles that normally would not form in large numbers
through coagulation being formed via surface growth, however we should note that at this short time, only
a very small amount of TiCl4 has been converted to TiO2 and thus further simulations will have to be run to
investigate this further.
2 The reader should note that as yet we have not been able to fully validate this distribution. As such it should only be viewed as
illustrative.
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7. Conclusions

In this paper we have shown how a model for nanoparticle growth may be transformed into a vague
form and generators of a stochastic process are deduced. This led us to derive a new mass-flow algorithm,
which can be applied to the simulation of coagulation, particle source and surface-growth processes.

A numerical implementation of the algorithm was used to simulate a test situation for which various
convergence properties could be calculated. The CPU time that the algorithm ran in was found to scale
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linearly with the normalization parameter, N, whilst the total errors in average size and second and third
moments were found to decrease as 1=

ffiffiffiffi
N

p
. For small N, when the systematic errors dominate the solution,

the error was found to decrease linearly in N. The total error in the solution for these simulations was two
orders of magnitude less than when compared to the similar direct simulation algorithm.

Three particle systems were simulated using the mass flow algorithm. The silica system was simulated for
increasing initial concentrations of the precursor SiH4, with the results calculated being in good agreement
with the experimental data obtained from the literature.

The formation of iron oxide was also simulated under varying initial concentrations of the precursor. At
low concentrations, the results were in very good agreement with the experimental data obtained from the
literature. At higher concentrations however, the difference between the model and the experiments differed
greatly. This has been attributed to a lack of kinetic data for the oxidation of FeCO5.

Finally, a simple titania system was simulated for both high and low initial concentrations of TiCl4. The
systems were simulated both with and without surface growth. It was found that surface growth is most
important for high initial concentrations of TiCl4 which is in accordance with [20].
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